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Assessing optimality and robustness for the control of dynamical systems

Metin Demiralp* and Herschel Rabitz
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This work presents a general framework for assessing the quality and robustness of control over a deter-
ministic system described by a state vectorx(t) under external manipulation via a control vectoru(t). The
control process is expressed in terms of a cost functional, including the physical objective, penalties, and
constraints. The notions of optimality and robustness are expressed in terms of the sign and the magnitude of
the cost functional curvature with respect to the controls. Both issues may be assessed from the eigenvalues of
the stability operatorS whose kernelK (t,t) is determined bydu(t)/du(t) for t0,t, t<t f , wheret0 and t f

are the initial and final times of the control interval. The overbar denotes the constraint that the control satisfies
the optimization conditions from minimizing the cost functional. The eigenvaluess of S satisfying s,1
assure local optimality of a control solution, withs51 being the critical value separating optimal solutions
from false solutions~i.e., those with negative second variational curvature of the cost functional!. In turn, the
maximally robust control solutions with the least sensitivity to field errors also correspond tos51. Thus,
sufficiently high sensitivity of the field at one timet to the field at another timet ~i.e.,s.1! will lead to a loss
of local optimality. A simple illustrative example is given from a linear dynamical system, and a bound for the
eigenvalue spectrum of the stability operator is presented. The bound is employed to qualitatively analyze
control optimality and robustness behavior. A second example of a nonlinear quartic anharmonic oscillator is
also presented for stability and robustness analysis. In this case it is proved that the control system kernel is
negative definite, implying full stability but only marginal robustness.

PACS number~s!: 05.45.2a
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I. INTRODUCTION

A primary concern with any dynamical control applic
tion is that the achieved result be suitably optimal and rob
@1–8#. Robustness and optimality have been viewed fr
various perspectives@4,5#. In the context of the present pa
per, we denote optimality to mean that the cost functionaJ
is at a positive curvature extremum with respect to the c
trol. Robustness similarly refers to the cost functional be
minimally sensitive to disturbances in the control. Thus,
these contexts, the best control solution among multiple p
sibilities would be the one that minimizes the cost functio
while simultaneously having a minimal positive curvatu
with respect to the control. An analysis of these issues
recently performed for the control of quantum systems@9#,
and here, we generalize to arbitrary dynamical systems
will be shown that the dual issues of optimality and robu
ness are dictated by the spectrum of an integral oper
derived from the dynamics. These issues are addressed i
context of control design, assuming that the dynamical s
tem is known. Consideration of the system uncertainty its
has received much attention.

The cost functionalJ is standardly composed of objec
tive, penalty, and constraint terms. The dynamical equati
for the system are assured to be satisfied by introducin
Lagrange multiplier function, and we will denoteu(t) as the
control vector. The physically acceptable solutions cor
spond to local minima ofJ, but the first variation criterion
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dJ /du(t)50 does not guarantee whether the solution is
local minimum or maximum ofJ. This circumstance can
only be assessed by considering the second varia
d2J /du(t)du(t), and determining its positive or negativ
definite character at each solution obtained from the fi
variational equations. Even if solutions are determined to
physically acceptable as minima, it is also highly desira
that they be robust to arbitrary incremental variationsdu(t)
in the control field, as might arise due to errors or uncerta
ties in the laboratory. In this context, robustness correspo
to a solution associated with minimal positive curvature
the cost functional.

In this work, we show that the eigenvalues of the stabil
operatorS whose kernelK (t,t) is related to the dynamically
constrained~overbar! functional derivativedu(t)/du(t) for
t0,t,t<t f dictate both the optimality and robustness of p
tential control solutions for manipulating deterministic sy
tems. A formal explicit expression for this operator will b
identified for an arbitrary dynamical system. A method f
the determination of the spectrum of the stability operato
also given. Some qualitative conclusions will be drawn
the nature of robustness from this bounding relationship.
though the formulation is quite general, a rather simple
meaningful system with a quadratic cost functional and
linear dynamical constraint, and, as a nonlinear system,
classical quartic anharmonic oscillator, are given for illust
tion.

The paper is organized as follows. Section II presents
formal analysis leading up to the determination of the sta
ity operator. Section III determines the spectrum of the s
bility operator for a linear dynamical system with a quadra
cost functional. An analysis bounding the spectrum is giv

lty
2569 ©2000 The American Physical Society
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followed by two simple illustrative examples to provide i
sight into the nature of the robustness and optimality. So
brief concluding remarks are presented in Sec. IV.

II. IDENTIFICATION OF THE STABILITY OPERATOR

Consider an optimally controlled deterministic dynamic
system whose state is described by the variablesxi(t), i
<n, tP@ t0 ,t f # and the system is optimally controlled by th
variablesuj (t), j <m, tP@ t0 ,t f #. t0 andt f prescribe the ini-
tial and final times of the optimal control procedure. T
optimal control problem is specified by a cost function
composed of objective, penalty, and dynamical constr
terms. The objective termJ0 aims to steer the state toward
a target value at the final time. It is explicitly given as

J0[w„x~ t f !,t f…. ~2.1!

Throughout the paper, bold letters will be used to den
vectors or operators. The penalty termJp of the cost func-
tional serves to suppress undesirable dynamics or con
features~e.g., maintaining the finiteness of the control va
ables! and is defined through an integral over a Lagrang
function L„x(t),u(t),t…,

Jp[E
t0

t f
dt L„x~ t !,u~ t !,t…. ~2.2!

The dynamics of the system is described by the follow
differential equation:

dx~ t !

dt
5f„x~ t !,u~ t !,t…, x~ t0!5a, ~2.3!

where a and the structure off are assumed to be known
Finally, a dynamical constraint termTd is included in the
cost functional to assure that Eq.~2.3! is satisfied through the
introduction of a time-dependent Lagrange multiplier vec
l(t),

Jd[E
t0

t f
dt lT~ t !H f„x~ t !,u~ t !,t…2

dx~ t !

dt J . ~2.4!

The total cost functionalT is the sum of all of these terms

J[Jo1Jp1Jd . ~2.5!

The variablesx(t), u(t), and l(t) are independent quant
ties, and their nominal values are defined by setting to z
the first variation of the cost functional,

dJ50. ~2.6!

This relation gives the following equations for the nomin
valuesx̄(t), ū(t), andl̄(t):

dx̄~ t !

dt
5 f „x̄~ t !,ū~ t !,t…, ~2.7a!

x̄~ t0!5a, ~2.7b!
e
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dl̄~ t !

dt
52S ]L

]x~ t ! D2S ]f

]x~ t ! D
T

l̄~ t !, ~2.8a!

l̄~ t f !5S ]w

]x~ t f !
D , ~2.8b!

S ]L
]u~ t ! D1S ]f

]u~ t ! D
T

l̄~ t !50, ~2.9!

where the overbar implies that the nominal values enter
corresponding entity and the arguments ofw, L, andf are not
shown explicitly for simplicity. A concise notation is use
for the functional derivatives in the formulas above such
]L/]u(t) denoting a vector whosej th element is]L/]uj (t)
while ]f/]u(t) denotes a matrix whosej th row andkth col-
umn is ] f j /]uk(t). These equations suffice to describe t
optimally controlled motion of the system. Equations~2.7a!
and~2.7b! define a forward evolution from the instantt0 to t f
by x̄(t) while Eqs.~2.8a! and ~2.8b! describe the backward
evolution l̄(t) from t f to t0 . Both evolutions depend on th
control vectoru(t), such that they become compatible
consistent specific values of the control vectorū(t) which
satisfy Eq.~2.9!.

The structure of the last three equations is determined
the dependence of the objective functionalw, the Lagrangian
L, and the dynamical functionf on x(t), l(t), and u(t).
These general nonlinear dependences will likely result
multiple solutions, and this possibility raises the question
which solution will be preferable. Some criteria need to
specified for this purpose, and a natural choice is the de
for robustness with respect to uncertainties or laboratory
turbances in the control vectoru(t). As the control solution
is specified by the minimization of the total cost function
J, the best information about the robustness of the con
process can be obtained by investigating the second varia
of J. If we explicitly write this termd2J for the nominal
values of all entities, then we see that all terms which
composed of the second order variationsd2u, d2x, andd2l
vanish by virtue of Eqs.~2.7!–~2.9! being valid. Two of the
remaining terms are composed of quadratic forms of the
order variations of Eqs.~2.7a!, ~2.7b! and ~2.8a!, ~2.8b!.
These equations are not peculiar to the nominal values of
control vectorū(t), and they remain valid for any contro
vector u(t). Thus, the first order variations of these equ
tions vanish, finally implying that only Eq.~2.9! has a con-
tribution to the second order variations ofJ. Therefore, we
have the following equation for the second variation of t
cost functional:

d2J5E
t0

t f
dt dF ]L

]u~ t !
1S ]f

]u~ t ! D
T

l~ t !GT

du~ t !, ~2.10!

which can be written more explicitly as follows:

d2J5E
t0

t f
dt$dx~ t !T@L xu~ t !1Fxu~ t !#du~ t !

1du~ t !T@Luu~ t !1Fuu~ t !#du~ t !

1dl~ t !TFu~ t !du~ t !%, ~2.11!
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where

Fu~ t ![
]f

]u~ t !
, ~2.12a!

Fxu~ t ![(
j 51

n

l j~ t !
]2f j

]x~ t !]u~ t !
, ~2.12b!

Fuu~ t ![(
j 51

n

l j~ t !
]2f j

]u~ t !2 , ~2.12c!

and

L xu~ t ![
]2L

]x~ t !]u~ t !
, ~2.13a!

Luu~ t ![
]2L

]u~ t !2 . ~2.13b!

The notation in Eqs.~2.12a!–~2.12c! and Eqs.~2.13a! and
~2.13b! is consistent with that used previously, such th
]2L/]x(t)]u(t) denotes a matrix whosej th row and kth
column is]2L/]xj (t)]uk(t). In this notation the order of the
differentiation is important, which results in the transpositi
of the matrix,

F ]2L
]x~ t !]u~ t !G

T

[
]2L

]u~ t !]x~ t !
. ~2.14!

The second variation of the cost functional given in E
~2.11! is a quadratic form over the first variations ofx(t),
u(t), andl(t). Sincedx(t) anddl(t) depend ondu(t) ~i.e.,
a laboratory variation of the control!, we can write the fol-
lowing relations in terms of their sensitivity coefficients wi
respect to the control vector:

dx~ t !5E
t0

t f
dt Sx~ t,t!du~t!, ~2.15a!

dl~ t !5E
t0

t f
dt Sl~ t,t!du~t!. ~2.15b!

A similar relation also can be written for the control vect
itself as follows:

du~ t !5E
t0

t f
dt d~ t2t!du~t!. ~2.16!

These relations lead to

d2J5E
t0

t f
dtE

t0

t f
dt du~t!T$Sx~ t,t!T@L xu~ t !1Fxu~ t !#

1Sl~ t,t!TFu~ t !1d~ t2t!@Luu~ t !1Fuu~ t !#%du~ t !.

~2.17!

If we now assume that the matrix sum which postmu
plies the Diracd function in Eq.~2.17! is positive definite,
then we can define a symmetric weight matrixW(t) as fol-
lows:
t

.

-

W~ t !2[Luu~ t !1Fuu~ t !. ~2.18!

This positive definite assumption is valid for the comm
case thatL is quadratic inu and F is linear in u such that
Fuu50. We can define a unit operatorI acting on an arbi-
trary integrable vector functiong(t) over the interval t
P@ t0 ,t f # as

Ig~ t ![E
t0

t f
dt d~ t2t!g~t! ~2.19!

and a symmetric operatorS,

Sg~ t ![E
t0

t f
dt K ~ t,t!g~t! ~2.20!

in terms of a symmetrized kernel matrixK (t,t),

K ~ t,t![2 1
2 W~ t !21$Sx~ t,t!T@L xu~ t !1Fxu~ t !#

1@Lux~t!1Fux~t!#Sx~t,t !1Sl~ t,t!TFu~ t !

1Fu~t!TSl~t,t !%W~t!21. ~2.21!

Since Eq.~2.17! does not change whent and t are inter-
changed we can conclude the following concise form for
second variation of the cost functional:

d2J5E
t0

t f
dt du~ t !TW~ t !@I2S#W~ t !du~ t !. ~2.22!

The kernelK (t,t) given by Eq.~2.21! includesu as an
arbitrary function. However, we want to confine ourselves
the case of optimal solutions because the robustness and
timality analysis are important for only these solution
Hence, we will take the following equation as the definitio
of the kernel:

K ~ t,t![2 1
2 W̄~ t !21$S̄x~ t,t!T@ L̄ xu~ t !1F̄xu~ t !#

1@ L̄ux~t!1F̄ux~t!#S̄x~t,t !1S̄l~ t,t!T F̄u~ t !

1F̄u~t!T S̄l~t,t !%W̄~t!21. ~2.23!

The kernelK (t,t) is closely related to the functional de
rivative of u(t) with respect to its value at another tim
u(t), when u(t) is confined to the set of solutions to Eq
~2.9!. If we consider the set of variationsdu(t) such that
u(t) and u(t)1du(t) remain in the set of solutions to Eq
~2.9!, then we can functionally differentiate Eq.~2.9! to ob-
tain

dx~ t !T@ L̄ xu~ t !1F̄xu~ t !#du~ t !

1du~ t !T@ L̄uu~ t !1F̄uu~ t !#du~ t !

1dl~ t !TF̄u~ t !du~ t !50, ~2.24!

where all overbarred quantities are evaluated at the nom
values of the state and control variables. Equations~2.15a!
and~2.15b! can be quickly rewritten for the overbarred en
ties as
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dx~ t !5E
t0

t f
dt S̄x~ t,t!du~t!, ~2.25a!

dl~ t !5E
t0

t f
dt S̄l~ t,t!du~t!. ~2.25b!

The interpretation ofdu(t)T in Eq. ~2.24! calls for care, as it
is the incremental response of the field about the nom
solution to anarbitrary variationdu(t), such that

du~ t !5E
t0

t f
dtS du~ t !

du~t! D du~t!. ~2.26!

The use of Eqs.~2.25a!, ~2.25b!, and ~2.26! in Eq. ~2.24!
yields

E
t0

t f
dt du~t!TH S̄x~ t,t!@ L̄ xu~ t !1F̄xu~ t !#

1S du~ t !

du~t! D T

@ L̄uu~ t !1F̄uu~ t !#1Sl~ t !T F̄u~ t !J du~ t !

50, ~2.27!

where we have employed the symmetry property ofL̄uu(t)
and F̄uu(t). Equation~2.27! leads to the relation

S du~ t !

du~t! D T

52@ L̄uu~ t !1F̄uu~ t !#21$S̄x~ t,t!@ L̄ xu~ t !1F̄xu~ t !#

1Sl~ t !T F̄u~ t !%. ~2.28!

A careful investigation shows that the kernel can be ide
fied as

K ~ t,t!5
1

2
FW~ t !S du~ t !

du~t! D T

1S du~t!

du~ t ! DW~t!G ,

~2.29!

which is the symmetric part ofW(t)@du(t)/du(t)#T upon
the t↔t interchange.

The operatorS is responsible for characterizing the op
mality and robustness of the control solutions. Since it
symmetric by construction, its spectrum is real@10#. As long
as its largest eigenvalue about a nominal solution does
exceed 1, then the corresponding solution is acceptable;
erwise, the optimal solution will correspond to local maxim
of the cost functional. The distance between 1 and the lar
eigenvalue ofS determines the degree of robustness.
smaller distance corresponds to a smaller curvature so a
make the solution less sensitive to the changes in the con
The determination of the spectrum of the operatorS for an
arbitrary system will call for standard numerical method
and little of a general nature can be said before the analy
Hence, we will discuss the spectral evaluation on a sim
illustrative system in the next section.

Before closing this section, we can make a few qualitat
comments on the norm of the operator kernelK . According
to Eq. ~2.23!, increasing the magnitude ofW̄(t) will dimin-
ish the norm of the kernel, if the other terms vary compa
al
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tively slowly. This is possible, for example, whenL̄uu(t) is
large while all other terms vary slowly. We may interpr
L̄uu(t) as the weight of the field fluence. This means that
norm of the kernel decreases as the contribution of the fi
fluence penalty term increases. Similarly, Eq.~2.23! implies
that the increasing sensitivity of the state and the Lagra
multiplier vectors,S̄x(t) and S̄l(t), to the control variable
raises the value of the kernel’s norm.

III. ILLUSTRATIONS

This section will apply the general optimality and robus
ness formalism above to two examples. The first is a lin
system with a single control and a quadratic cost function
Bounds will be deduced for the eigenvalues of the opera
S, and a simple analytically soluble special case will be e
amined to attain further insight. The last subsection~Sec.
III B ! gives the second example on the stability and robu
ness of a quartic anharmonic oscillator.

A. Linear systems

In Secs. III A 1–III A 3, we will present the general spe
tral analysis for a linear system with a quadratic cost fu
tional. The treatment will include a spectral analysis a
bounds for the kernel along with their relationships to ge
eral optimality and robustness properties. Finally an appli
tion will be given for a simple analytically soluble linea
system.

1. Spectral analysis

Consider an optimally controlled system with a
n-dimensional state vectorx(t) and a single control function
u(t) associated with a quadratic cost functional. The L
grangian has the form

L„x~ t !,u~ t !,t…[ 1
2 x~ t !TQx~ t !x~ t !1 1

2 Vu~ t !u~ t !2,

Vu~ t !.0, Qx~ t !T5Qx~ t !, tP@ t0 ,t f # ~3.1!

and f„x(t),u(t),t… is given in terms ofA(t) andb(t),

f„x~ t !,u~ t !,t…[A~ t !x~ t !1b~ t !u~ t !. ~3.2!

The objective term has the form

w„x~ t f !,t f…[
1
2 @x~ t f !2 x̃#TQw~ t f !@x~ t f !2 x̃#,

Qw~ t f !
T5Qw~ t f ! ~3.3!

wherex̃ is the prescribed target andQw(t f) is assumed to be
positive definite.

The nominal valuesx̄(t),l̄(t),ū(t) satisfy the equations

dx̄

dt
5A~ t !x̄~ t !1b~ t !ū~ t !, ~3.4a!

x̄~ t0!5a, ~3.4b!

dl̄~ t !

dt
52Qx~ t !x̄~ t !2A~ t !T l̄~ t !, ~3.5a!



in

e
ffi-

a-
f-

,

PRE 61 2573ASSESSING OPTIMALITY AND ROBUSTNESS FOR THE . . .
l̄~ t f !5Qw~ t f !@ x̄~ t f !2 x̃#, ~3.5b!

Vu~ t !ū~ t !1b~ t !T l̄~ t !50, ~3.6!

where we have used

]f

]x~ t !
5A~ t !, ~3.7a!

]L
]x~ t !

5Qx~ t !x~ t !, ~3.7b!

]w

]x~ t f !
5Qw~ t f !@x~ t f !2 x̃#, ~3.7c!

]f

]u~ t !
5b~ t !, ~3.7d!

]L
]u~ t !

5Vu~ t !u~ t !. ~3.7e!

The solution for x̄(t) can be obtained in terms ofu(t)
through standard analytic techniques to give the follow
explicit expression:

x̄~ t !5P~ t !a1E
t0

t

dt P~ t !P~t!21b~t!u~t!, ~3.8!

whereP(t) satisfies

dP~ t !

dt
5A~ t !P~ t !, ~3.9a!

P~ t0!5I . ~3.9b!

A similar expression can be obtained to relatel̄(t) to x̄(t) as
follows:

l̄~ t !5P~ t !21T
P~ t f !

TQw~ t f !@ x̄~ t f !2 x̃#

1E
t

t f
dt P~ t !21T

P~t!TQx~t!x̄~t!, ~3.10!

where we have used the fact

dP~ t !21

dt
52P~ t !21A~ t !, ~3.11a!

P~ t0!215I . ~3.11b!

Equations~3.8! and~3.10! suffice to specify the kernelK of
the operatorS, since we can identify the specific values

Fu5b~ t !, ~3.12a!

Fuu50, ~3.12b!

Fxu50, ~3.12c!

Luu5Vu~ t !, ~3.13a!
g

L xu50, ~3.13b!

which imply that

W~ t !5Vu~ t !1/2 ~3.14!

and from Eq.~2.21!,

K ~ t,t!5Vu~ t !21/2@S̄l~ t,t!Tb1bT S̄l~t,t !#Vu~t!21/2.
~3.15!

Equation~3.15! shows that the explicit determination of th
kernel necessitates the evaluation of the sensitivity coe
cient S̄l(t,t). To this end we can start with the determin
tion of S̄x(t,t). This can be easily done by functionally di
ferentiating Eq.~3.8!, with respect tou(t). This gives

S̄x~ t,t!5 H0,
P~ t !P~t!21b~t!,

t,t
t>t, ~3.16!

A similar treatment of Eq.~3.10! gives the following relation
betweenS̄l(t,t) and S̄x(t,t):

S̄l~ t,t!5P~ t !21T
P~ t f !

TQw~ t f !S̄x~ t f ,t!

1E
t

t f
dt1 P~ t !21T

P~ t1!TQx~ t1!S̄x~ t1 ,t!.

~3.17!

The use of Eq.~3.16! in Eq. ~3.17! yields

S̄l~ t,t!5P~ t !21T
P~ t f !

TQw~ t f !P~ t f !P~t!21b~t!

1E
b~ t,t!

t f
dt1 P~ t !21T

PT~ t1!Qx~ t1!P~ t1!P~t!21b~t!,

~3.18!

where

b~ t,t!5 H t,
t,

t<t
t>t. ~3.19!

Since S̄l(t,t) and b(t) are n-dimensional vector functions
the kernel of the stability operator,K (t,t), is a scalar. There-
fore, we can write

K ~ t,t!5Vu~ t !21/2@K1~ t,t!1K1~t,t !#Vu~t!51/2,
~3.20!

K1~ t,t!5(
j 51

n

k j
~w!~ t f !h j~ t !h j~t!1K2~ t,t!, ~3.21!

K2~ t,t!5E
b~ t,t!

t f
dt1 bT~ t !P~ t !21T

P~ t1!TQx~ t !

3P~ t1!P~t!21b~t!, ~3.22!

h j~ t !5Vu~ t !21/2qj
~w!~ t f !

TP~ t f !P~ t !21b~ t !,

j 51,2,3, . . . ,n. ~3.23!
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In these equations,k j
(w)(t f), qj

(w)(t f) denote thej th eigen-
value and the corresponding normalized eigenvector of
matrix Qw(t f). The eigenvalues are real sinceQw(t f) is sym-
metric.

Now we can formulate the eigenvalue problem of the o
erators as

Sj~ t !5sj~ t !, ~3.24!

or more explicitly

S1j~ t !1(
j 51

n

n jh j~ t !5sj~ t !, ~3.25!

where the integral operatorS1 is defined through an arbitrar
vector functiong(t) which is integrable over the intervalt
P@ t0 ,t f # as

S1g~ t ![E
t0

t f
dt Vu~ t !21/2@K2~ t,t!1K2~t,t !#

3Vu~t!21/2g~t!. ~3.26!

n j , j 51,2, . . . ,n is defined as follows:

n j[E
t0

t f
dth j~ t !j~ t !. ~3.27!

To reduce the above eigenvalue problem to an algeb
equation fors we can formally write

j~ t !5 (
k51

n

nk@sI2S1#21hk~ t !. ~3.28!

Premultiplication of Eq.~3.28! by h j (t) and integration over
t betweent0 and t f gives the equations

(
k51

n

r jk~s!nk5n j , j 51,2, . . . ,n ~3.29!

where

r jk~s![E
t0

t f
dth j~ t !@sI2S1#21hk~ t !, j ,k51,2, . . . ,n.

~3.30!

If we let r~s! denote then-dimensional matrix whose ele
ments are represented byr jk(s), then we need to evaluat
the possibles values which make at least one eigenvalue
r unity. These values form a set for the solution of the eig
problem. Their evaluation also produces the values of then j ,
j 51,2, . . . ,n parameters within an arbitrary multiplicativ
constant. After having these values the remaining proced
is just a matter of evaluation ofj(t) from Eq. ~3.28! within
the same arbitrary multiplicative constant. This proced
needs an explicit expression ofr jk(s) in terms ofs for all
values ofj andk. To this end we can use a number of mea
including a series expansion, Stieltjes series@9#, characteris-
tic function approach@10,11#, Pade´ approximants@9#, etc. To
go further calls for numerical calculations, and for the p
poses of this paper, it suffices to place bounds on the s
trum of S, as presented in the next subsection.
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2. Spectral bounds and general optimality
and robustness properties

We seek simple expressions as bounds for the spectru
S. To this end, the following boundsB~ ! for the norms of
various quantities are useful:

B~b![S E
t0

t f
dt b~ t !Tb~ t ! D 1/2

, ~3.31!

B~P![H E
t0

t f
dt z~ t !TP~ t !TP~ t !z~ t !

* t0

t f dt z~ t !Tz~ t !
J

max

1/2

, ~3.32!

B~P21![H E
t0

t f
dt z~ t !TP~ t !21T

P~ t !21z~ t !

* t0

t f dt z~ t !Tz~ t !
J

max

1/2

,

~3.33!

B~Qx![H E
t0

t f
dt z~ t !TQx~ t !TQx~ t !z~ t !

* t0

t f dt z~ t !Tz~ t !
J

max

1/2

, ~3.34!

where the subscript max means the maximization with
spect toz. These definitions, combined with Eqs.~3.15!–
~3.18!, lead to

B~S!5@B~Qw!1B~Qx!#B~P!2B~P21!2B~b!2,
~3.35!

whereB(Qw) is the largest one of thek j
(w)(t f) parameters in

Eq. ~3.21!. If we define the condition numberKp for the
propagatorP as

Kp[B~P!B~P21!, ~3.36!

then Eq.~3.35! becomes

B~S!5@B~Qw!1B~Qx!#Kp
2B~b!2. ~3.37!

If the bound given above for the operator remains sma
than 1, then the control of the system under consideratio
stable. However, the bounds which exceed 1 do not m
that the control of the system is unstable due to the fact
the norm analysis might be too conservative. Thus,B(S)
,1 is not a necessary condition for optimality. In the case
acceptable optimal control solutions, the difference betw
B~S! and 1 gives a measure of the robustness of the s
tions. Smaller differences imply more robustness in the c
trol solutions since the reduced curvature of the cost fu
tional leaves the system less sensitive to changes in
control u(t).

Some qualitative conclusions may be drawn from t
structure of Eq.~3.37!. To do so we will assumeB(S),1
and the issue of interest is how the physical variables ac
increase the robustness byB(S)→1; an extension of this
behavior eventually results in an unacceptable physical s
tion B(S).1 with d2J,0 With these comments in mind w
may draw the following conclusions from Eq.~3.37!.
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(1) Objective.Increasing the contribution ofB(Qw) from
the objective will enhance the robustness.

(2) Penalty. Increasing the contribution ofB(Qx) from
the penalty will enhance the robustness.

(3) Control coupling vector.Enhanced robustness occu
with increasing magnitude of the control coupling vectorb.
This, apparently, arises due to more effective control rega
less of the control strength.

(4) Propagator’s condition number.As the condition
numberKp increases, a corresponding enhancement of
bustness occurs.

Once again, all of the circumstances in points~1!–~4!
~especially the later one!, when taken beyond a critical limit
lead to a nonoptimal control solution. Additional subtleti
might arise from a full analysis of the eigenvalues of t
operatorS, beyond the simple bounding behavior examin
here. This point is amplified by observing that the bou
given above does not explicitly depend on the nominal v
ues of the state and control variables. This is due to
specific structure of the example above. If the dynami
constraint is chosen with a nonlinear dependence on th
variables, or if the cost functional is chosen to have a hig
order nonlinearity than a quadratic dependence on the v
ables, then the nominal values will appear in the bound.

3. Application to an analytically soluble linear system

Consider a simple nontrivial system such thatb is a con-
stantn-dimensional vector,A is ann-dimensional symmetric
constant square matrix, andQx(t) vanishes. The objective
term Qw(t) is assumed to be a projection operator

Qw~ t ![v1v1
T , ~3.38!

wherev1 is an eigenvector ofA. Thus, the goal is to steer th
system state towards the eigenvectorv1 of A. We also as-
sume that

Vu~ t ![1. ~3.39!

For this system, the kernel of the operatorS can be explicitly
written as

K ~ t,t!5~bTv1!2en1~2t f2t2t!. ~3.40!

The operatorS has only one eigenvalue, given by

s15~bTv1!2
e2n1~ t f2t0!21

2n1
. ~3.41!

This value increases unboundedly ifn1.0 when the control
time (t f2t0) tends to go to infinity. This means that th
solution will be lost after a specific value of the control tim
interval. This is because positiven1 corresponds to a dy
namically unstable system. The case wheren150 creates a
similar chance of losing the solution when the control tim
increases beyond a specific value. In the case of negativn1
values, thes1 value is bounded from above by (bTv1)2 for
all control times. Hence, the solution of the optimal cont
problem will exist if (bTv1)2,1. In the case where (bTv1)2

.1 and n150, one needs to use a control time interv
d-

o-

d
d
l-
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smaller than a specific value to get positive curvature in
cost functional and therefore optimality in the solution.

B. An application to a quartic anharmonic oscillator

Consider an optimally controlled classical quartic anh
monic oscillator whose Hamiltonian is

H[
1

2m
x2~ t !21

k1

2
x1~ t !21

k2

4
x1~ t !42bx1~ t !u~ t !,

~3.42!

wherek1 , k2 , andb are constants,m is the mass,x1(t) is the
particle position, andx2(t) is the associated momentum.

The Lagrangian in Eq.~2.2! is specified as

L„x̄~ t !,ū~ t !,t…[ 1
2 x̄~ t !TQx̄~ t !1 1

2 vū~ t !2,

v.0, QT5Q, tP@0,t f #. ~3.43!

The objective term in the cost functional of Eq.~2.1! is given
as

w„x̄~ t f !,t f…[
1
2 @ x̄~ t f !2 x̃#TR@ x̄~ t f !2 x̃#, ~3.44!

with RT5R being positive definite. The equations of motio
in Eq. ~2.3! for this case are

dx̄1~ t !

dt
5

1

m
x̄2~ t !, ~3.45a!

dx̄2~ t !

dt
52k1x̄1~ t !2k2x̄1~ t !31bū~ t !, ~3.45b!

x̄1~0!5a1 , ~3.45c!

x̄2~0!5a2 , ~3.45d!

with a1 and a2 being the initial position and momentum
Similarly, the Lagrange multiplier Eqs.~2.8! and ~2.9! be-
come

dl̄1~ t !

dt
52Q11x̄1~ t !2Q12x̄2~ t !1@k113k2x̄1~ t !2#l̄2~ t !,

~3.46a!

dl̄2~ t !

dt
52Q12x̄1~ t !2Q22x̄2~ t !2

1

m
l̄1~ t !, ~3.46b!

l̄~ t f !5R@ x̄~ t f !2 x̃#, ~3.46c!

vū~ t !1bl̄2~ t !50. ~3.47!

The following changes to dimensionless variables are m
to facilitate the subsequent analysis:t→Am/k1t, x̄1(t)
→Ak1 /k2x̄1(t), a1→Ak1 /k2a1 , x̃1→Ak1 /k2x̃1 , x̄2(t)
→k1Am/k2x̄2(t), a2→k1Am/k2a2 , x̃2→k1Am/k2x̃2 ,
l̄1(t)→Am/k1l̄1(t), l̄2(t)→mAk1 /k2l̄2(t), ū(t)→k1 /
bAk1 /k2ū(t), v→mb2/k1v, and finally
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R→FAm/k2 0

0 mAk1 /k2
GRFAk2 /k1 0

0 ~1/k1!Ak2 /m
G .

~3.48!

These transformations permit rewriting Eqs.~3.45a!–~3.47!
in the following form:

dx̄1~ t !

dt
5 x̄2~ t !, ~3.49a!

dx̄2~ t !

dt
52 x̄1~ t !2 x̄1~ t !31ū~ t !, ~3.49b!

x̄1~0!5a1 , ~3.49c!

x̄2~0!5a2 , ~3.49d!

dl̄~ t !

dt
52A1

T~ t !l̄~ t !2Qx̄~ t !, ~3.50a!

l̄~ t f !5R@ x̄~ t f !2 x̃#, ~3.50b!

A1~ t ![F 0 1

2123x̄1~ t !2 0G , ~3.50c!

vū~ t !1l̄2~ t !50. ~3.50d!

In this case the kernel of the stability operator can be writ
as

K ~ t,t![2
1

2v
@S̄l

~2!~ t,t!1S̄l
~2!~t,t !#, ~3.51!

where the superscript~2! means the second element of t
sensitivity coefficient vector. To proceed, we take the fu
tional derivative of Eqs.~3.50a! and ~3.50b! with respect to
u(t).

]S̄l~ t,t!

]t
52A1

T~ t !S̄l~ t,t!2QS̄x~ t,t!, ~3.52a!

S̄l~ t f ,t!5RS̄x~ t f ,t!. ~3.52b!

The solution of these equations depends on the sensit
coefficient vectorSx(t,t) prescribed below. We now define
backward propagatorPB(t) as follows:

dPB~ t !

dt
52A1

T~ t !PB~ t !, ~3.53a!

PB~ t f !5I . ~3.53b!

Then Eqs.~3.52a! and ~3.52b! become

S̄l~ t,t!5PB~ t !RS̄x~ t f ,t!

1E
t

t f
dt1 PB~ t !PB~ t1!21QS̄x~ t1 ,t!. ~3.54!
n

-

ity

To obtain an explicit expression forS̄x(t,t) we take the
functional derivative of Eqs.~3.49a!–~3.49d!:

]S̄x~ t,t!

]t
5A1~ t !S̄x~ t,t!1d~ t2t!F01G , ~3.55a!

S̄x~0,t!50, ~3.55b!

which can be solved with the aid of a forward propaga
PF(t) satisfying

dPF~ t !

dt
5A1~ t !PF~ t !, ~3.56a!

PF~0!5I . ~3.56b!

This propagator permits a compact solution of Eq.~3.55!,

S̄x~ t,t!5 H0, t,t
PF~ t !PF~t!21e2 , t>t,

e2[F01G , ~3.57b!

which leads to

S̄l~ t,t!5PB~ t !RPF~ t f !PF~t!21e2

1E
max~ t,t!

t f
dt1 PB~ t !PB

21~ t1!QPF~ t1!PF~t!21e2

~3.58!

and finally yields

S̄l
~2!~ t,t!5e2

TPB~ t !RPF~ t f !PF~t!21e2
T

1E
max~ t,t!

t f
dt1 e2

TPB~ t !PB
21~ t1!QPF~ t1!PF~t!21e2 .

~3.59!

This equation can be put into a more symmetric form b
cause the forward and backward propagators are not in
pendent of each other. Manipulation of Eqs.~3.53a! and
~3.56a! leads to

d

dt
@PB

T~ t !PF~ t !#50, ~3.60!

which can be solved by using the conditions in Eqs.~3.53b!
and ~3.56! to give

PB
T~ t !5PF~ t f !PF

21~ t !, ~3.61!

implying that

PB~ t !PB
21~ t1!5@PF

21~ t !#TPF
T~ t !. ~3.62!

This result employed in Eq.~3.59! produces



he

i-

ng

e

re

i-

sing

me

-

a-

PRE 61 2577ASSESSING OPTIMALITY AND ROBUSTNESS FOR THE . . .
S̄l
~2!~ t,t!5e2

T@PF
21~ t !#TPF

T~ t f !RPF~ t f !PF
21~t!e2

T

1E
max~ t,t!

t f
dt1 e2

T@PF
21~ t !#T

3PF
T~ t1!QPF~ t1!PF

21~t!e2 , ~3.63!

which enables identifying the kernel as

K ~ t,t!52
1

2v Fe2
T@PF

21~ t !#TPF
T~ t f !RPF~ t f !PF

21~t!e2
T

1e2
T@PF

21~t!#TPF
T~ t f !RPF~ t f !PF

21~ t !e2
T

1E
max~ t,t!

t f
dt1 e2

T@PF
21~ t !#TPF

T~ t1!QPF~ t1!PF
21~t!e2

1E
max~ t,t!

T

dt1 e2
T@PF

21~t!#TPF
T~ t1!QPF~ t1!PF

21~ t !e2G .
~3.64!

Recall that the stability operator is defined by

Sw~ t ![E
0

t f
dt K ~ t,t!w~t!, ~3.65!

where w(t) is a square integrable function overtP@0,t f #.
Without loss of generality, if we assume thatw(t) has unit
norm, then the following inner product will characterize t
spectrum of the stability operator:

~w,Sw![E
0

t f
dtE

0

t f
dt w~ t !K ~ t,t!w~t!5s1~ t f !1s2~ t f !,

~3.66!

where

s1~ t f ![2
1

v E
0

t f E
0

t f
dt dt e2

T@PF
21~ t !#TPF

T~ t f !

3RPF~ t f !PF
21~t!e2

T , ~3.67!

s2~ t f ![2
1

v E
0

t f E
0

t f
dt dt

3E
max~ t,t!

t f
dt1 e2

T@PF
21~ t !#TPF

T~ t1!

3QPF~ t1!PF
21~t!e2 . ~3.68!

SinceR is a positive definite 232 symmetric matrix, we can
write it in terms of the following spectral resolution:

R[EL~R!r1r1
T1ES~R!r2r2

T , ~3.69!

whereEL(R) andES(R) denote the largest and smallest e
genvalues ofR, respectively, whiler1 and r2 stand for the
corresponding eigenvectors. This formula permits writi
s1(t f) as
s1~ t f !52
1

v
EL~R!S E

0

t f
dt e2

T@PF
21~ t !#TPF

T~ t f !r1D 2

2
1

v
ES~R!S E

0

t f
dt e2

T@PF
21~ t !#TPF

T~ t f !r2D 2

,

~3.70!

which shows thats1(t f) is a negative definite function sinc
v is positive whileEL(R) andES(R) are non-negative.

Following along similar lines the positive definite natu
and symmetry ofQ lead to writing

Q[EL~Q!q1q1
T1ES~Q!q2q2

T , ~3.71!

whereEL(Q) andES(Q) denote the largest and smallest e
genvalues ofQ, respectively, whileq1 andq2 stand for the
corresponding eigenvectors. This formula enables expres
s2(t f) as

s2~ t f !52
1

v
EL~Q!E

0

t f
dtE

0

t

dtE
t

t f
dt1 j1~ t,t1!j1~t,t1!

2
1

v
ES~Q!E

0

t f
dtE

0

t

dtE
t

t f
dt1 j2~ t,t1!j2~t,t1!

2
1

v
EL~Q!E

0

t f
dtE

t

t f
dtE

t

t f
dt1 j1~ t,t1!j1~t,t1!

2
1

v
ES~Q!E

0

t f
dtE

t

t f
dtE

t

t f
dt1 j2~ t,t1!j2~t,t1!,

~3.72!

where

j1~ t,t1![e2
T@PF

21~ t !#TPF
T~ t1!q1 , ~3.73a!

j2~ t,t1![e2
T@PF

21~ t !#TPF
T~ t1!q2 . ~3.73b!

The third and fourth integrals are, respectively, the sa
as the first and second ones in Eq.~3.72!. This comes from
the following triangle identity which is valid for any arbi
trary functionf(t,t):

E
0

t f
dtE

t

t f
dt f~ t,t![E

0

t f
dtE

0

t

dt f~ t,t!. ~3.74!

Therefore, we have

s2~ t f !52
2

v
EL~Q!E

0

t f
dtE

0

t

dtE
t

t f
dt1 j1~ t,t1!j1~t,t1!

2
2

v
ES~Q!E

0

t f
dtE

0

t

dtE
t

t f
dt1 j2~ t,t1!j2~t,t1!.

~3.75!

If we now apply the above triangle identity to the integr
tions overt and t1 , then we obtain
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s2~ t f !52
2

v
EL~Q!E

0

t f
dt1E

0

t1
dtE

0

t

dt j1~ t,t1!j1~t,t1!

2
2

v
ES~Q!E

0

t f
dt1E

0

t1
dtE

0

t

dt j2~ t,t1!j2~t,t1!,

~3.76!

which yields

s2~ t f !52
1

v
EL~Q!E

0

t f
dtS E

0

t

dt j1~t,t ! D 2

2
1

v
ES~Q!E

0

t f
dtE

0

t

dtS E
0

t

dt j2~t,t ! D 2

.

~3.77!

Equation~3.77! implies thats2(t f) is a negative definite
decreasing function oft f . This result and the previous on
for s1(t f) lead to the following conclusions.

~1! The control of a classical quartic anharmonic oscil
tor always exhibits stable behavior as shown by the nega
definiteness of the stability operator. In the same vein
control doesnot show robustness to disturbances. Thus at f
increases the control dynamics becomes more stable but
robust.

~2! If the control timet f tends to increase, then the st
bility operator tends to be more negative definite sin
s2(t f) decreases, unless a special relation exists betweev
and Q. Thus ast f increases the control dynamics becom
more stable, but less robust.
m

-
e
e
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IV. CONCLUDING REMARKS

This paper presents a general framework for analyzing
optimality and robustness of any particular control soluti
to a deterministic system. The concepts and tools should
broadly applicable when considering the control of dynam
cal systems@11–13#. The perspective we follow here is dis
tinct and complementary to that in the prior literature@6–8#.
It is shown that both of these issues are dictated by the
genvalue spectrum of the operatorS whose kernelK (t,t) is
related to the dynamically constrained functional derivat
du(t)/du(t) for t0,t, t,t f . No attempt was made to con
duct a full functional analysis of this problem in this prese
paper. Here, a bound on the spectrum for linear control s
tems led to an interesting set of qualitative conditions rega
ing robustness and optimality. These conditions may serv
qualitatively guide future robust design efforts for the cont
of deterministic systems.

The two illustrations based on linear systems and a qu
tic anharmonic oscillator demonstrate different models
stability and robustness analysis. In the case of linear s
tems we constructed bounds to determine the spectral ra
of the stability operator, whereas for the quartic anharmo
oscillator case the analysis was based on demonstrating
negative definite nature of the stability operator. Each fut
application will have its own features for analysis, includin
the need for a full numerical analysis of the kernel in so
cases.
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