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This work presents a general framework for assessing the quality and robustness of control over a deter-
ministic system described by a state vectfr) under external manipulation via a control vectdt). The
control process is expressed in terms of a cost functional, including the physical objective, penalties, and
constraints. The notions of optimality and robustness are expressed in terms of the sign and the magnitude of
the cost functional curvature with respect to the controls. Both issues may be assessed from the eigenvalues of
the stability operatoS whose kerneK(t, 7) is determined bysu(t)/su(r) for to<t, 7<t;, wheret, andt;
are the initial and final times of the control interval. The overbar denotes the constraint that the control satisfies
the optimization conditions from minimizing the cost functional. The eigenvalued S satisfying o<1
assure local optimality of a control solution, with=1 being the critical value separating optimal solutions
from false solutiongi.e., those with negative second variational curvature of the cost functionalrn, the
maximally robust control solutions with the least sensitivity to field errors also correspoad-o Thus,
sufficiently high sensitivity of the field at one tint@o the field at another time(i.e., c>1) will lead to a loss
of local optimality. A simple illustrative example is given from a linear dynamical system, and a bound for the
eigenvalue spectrum of the stability operator is presented. The bound is employed to qualitatively analyze
control optimality and robustness behavior. A second example of a nonlinear quartic anharmonic oscillator is
also presented for stability and robustness analysis. In this case it is proved that the control system kernel is
negative definite, implying full stability but only marginal robustness.

PACS numbds): 05.45-a

. INTRODUCTION 5J158u(t)=0 does not guarantee whether the solution is a
local minimum or maximum of7. This circumstance can
A primary concern with any dynamical control applica- only be assessed by considering the second variation
tion is that the achieved result be suitably optimal and robus? 7/ su(t) su(7), and determining its positive or negative
[1-8]. Robustness and optimality have been viewed fronyefinite character at each solution obtained from the first
various perspectiveis},5]. In the context of the present pa- yariational equations. Even if solutions are determined to be
per, we denote optimality to mean that the cost functigial .y sically acceptable as minima, it is also highly desirable
is at a positive curvature extremum with respect to the cong, ot pev'be robust to arbitrary incremental variatidiet)
trol. Robustness similarly refers to the cost functional being, 4« ontrol field, as might arise due to errors or uncertain-

minimally sensitive to disturbances n the control. T_hus, Niies in the laboratory. In this context, robustness corresponds
these contexts, the best control solution among multiple pos-

sibilities would be the one that minimizes the cost functional-> & solution gssomated with minimal positive curvature of
while simultaneously having a minimal positive curvaturethe cos_t functional. . .
with respect to the control. An analysis of these issues was " this work, we show that the eigenvalues of the stability
recently performed for the control of quantum systdigis ~ OPeratorS whose kemeK((t, 7) is related to the dynamically
and here, we generalize to arbitrary dynamical systems. gonstrainedoverbaj functional derivativesu(t)/ou(r) for
will be shown that the dual issues of optimality and robust-to<t,7<t; dictate both the optimality and robustness of po-
ness are dictated by the spectrum of an integral operatdential control solutions for manipulating deterministic sys-
derived from the dynamics. These issues are addressed in ttems. A formal explicit expression for this operator will be
context of control design, assuming that the dynamical sysidentified for an arbitrary dynamical system. A method for
tem is known. Consideration of the system uncertainty itselthe determination of the spectrum of the stability operator is
has received much attention. also given. Some qualitative conclusions will be drawn on
The cost functional7 is standardly composed of objec- the nature of robustness from this bounding relationship. Al-
tive, penalty, and constraint terms. The dynamical equationthough the formulation is quite general, a rather simple but
for the system are assured to be satisfied by introducing meaningful system with a quadratic cost functional and a
Lagrange multiplier function, and we will denot€t) as the  linear dynamical constraint, and, as a nonlinear system, the
control vector. The physically acceptable solutions correclassical quartic anharmonic oscillator, are given for illustra-
spond to local minima of7, but the first variation criterion tion.
The paper is organized as follows. Section Il presents the
formal analysis leading up to the determination of the stabil-
*Permanent address: Engineering Sciences Department, Faculty operator. Section Il determines the spectrum of the sta-
of Art and Science,stanbul Technical University, Ayazagcam-  bility operator for a linear dynamical system with a quadratic
pus, Maslak, 80626tanbul, Turkey. cost functional. An analysis bounding the spectrum is given,
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followed by two simple illustrative examples to provide in- df(t) By of \T_
sight into the nature of the robustness and optimality. Some T —( ) —( ) A(b), (2.83
brief concluding remarks are presented in Sec. IV. t IX(t) Ix(t)
II. IDENTIFICATION OF THE STABILITY OPERATOR f(tf): (%), (2.8b
f

Consider an optimally controlled deterministic dynamical
system whose state is described by the varialilés), i L
<n, te[tg,t;] and the system is optimally controlled by the (au(t)) +(
variablesu;(t), j<=m, te[ty,t;]. t, andt; prescribe the ini-
tial and final times of the optimal control procedure. The

optimal control p.robllem is specified by a cqst f“nCtion‘?‘lcorresponding entity and the argumentsso’, andf are not
composed of objective, penalty, and dynamical constraingy,,n explicitly for simplicity. A concise notation is used

terms. The objective ternY, aims to steer the state towards ¢ the functional derivatives in the formulas above such as

f T
&u(t)) A1)=0, 2.9

where the overbar implies that the nominal values enter the

a target value at the final time. It is explicitly given as dL1du(t) denoting a vector whosith element is7£/duj(t)
_ )t 21 while df/gu(t) denotes a matrix whosggh row andkth col-
Jo=ex(to),ty). 2.3 umn is #f; /du,(t). These equations suffice to describe the

optimally controlled motion of the system. Equatioi2s73

eand(2.7b) define a forward evolution from the instagtto t;
vectors or operators. The penalty tegf of the cost func- .\ 5r4y \while Eqs.(2.89 and (2.8 describe the backward
tional serves to suppress undesirable dynamics or contro —

features(e.g., maintaining the finiteness of the control vari- €VOIUtoNA(t) from t to t,. Both evolutions depend on the

ables and is defined through an integral over a LagrangiarfOntrol vectoru(t), such that they become compatible at
function £(x(t),u(t),t), consistent specific values of the control vectgt) which

satisfy Eq.(2.9.
tg The structure of the last three equations is determined by
jpEJ dt £(x(t),u(t),t). (2.2 the dependence of the objective functiopathe Lagrangian
to L, and the dynamical functiof on x(t), A(t), andu(t).
) ) ) . These general nonlinear dependences will likely result in
The dynamics of the system is described by the followingp,jinje solutions, and this possibility raises the question of
differential equation: which solution will be preferable. Some criteria need to be
specified for this purpose, and a natural choice is the desire
w =f(x(1),u(t),t), X(tg)=a, 2.3 for robustn_ess with respect to uncertainties or Iaborato_ry dis-
dt turbances in the control vectoKt). As the control solution
is specified by the minimization of the total cost functional
wherea and the structure of are assumed to be known. 7 the best information about the robustness of the control
Finally, a dynamical constraint ter is included in the process can be obtained by investigating the second variation
cost functional to assure that BQ.3) is satisfied through the of 7. If we explicitly write this term 2.7 for the nominal
introduction of a time-dependent Lagrange multiplier vectorvalues of all entities, then we see that all terms which are

A(t), composed of the second order variatiaitsi, 6°x, and 6>\
ax(t) vanish by virtue of Eqs(2.7)—(2.9) being valid. Two of the
t X(t remaining terms are composed of quadratic forms of the first
_ T _
‘%—ftod“‘ (t)‘f(x(t),u(t),t) dt |- (24 order variations of Eqs(2.73, (2.7b and (2.83, (2.8b).

These equations are not peculiar to the nominal values of the
The total cost functional is the sum of all of these terms, ~control vectoru(t), and they remain valid for any control
vector u(t). Thus, the first order variations of these equa-
T=To+ Tyt Ty (2.5  tions vanish, finally implying that only Eq2.9) has a con-
tribution to the second order variations gf Therefore, we
The variablesx(t), u(t), and\(t) are independent quanti- have the following equation for the second variation of the
ties, and their nominal values are defined by setting to zer60st functional:

the first variation of the cost functional, T

su(t), (2.10

L f )T
— 4 A(D)

= t Jd
”‘ft d4t9 Zu (aum

0

57=0. (2.6)

This relation gives the following equations for the nominal which can be written more explicitly as follows:
valuesx(t), u(t), andA(t):

dx(t)

F7- f G X() TTL (1) + Fra(D)] 8U(D)
R CUNTUR (2.73 o

+0u(t) L yy(t) + Fyy(t)1u(t)
X(tg)=a, (2.7 + 8N (1) TR (1) du(t)}, (2.1D
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where W(t)ZELuu(t)+Fuu(t)- (2.18
Fy(t)= —— Jf (2.123 This positive definite assumption is valid for the common
u au(t)’ ' case thal is quadratic inu andF is linear inu such that
F,,=0. We can define a unit operatbracting on an arbi-
2 azfj trary integrable vector functiorg(t) over the intervalt
qu(t)=j:1 Aj(1) XD’ (212D [ty,t4] as
ty
aZf Ig(t)zf dr 8(t—7)g(7) (2.19
Fuu(t)= 2 MO Sh2 (2.129 to
and a symmetric operatdt,
and y 'c op
L Sq(t) ftfdtK(t )g(7) (2.20
_ g(t)= ,7)O(T )
Lxu(t)— ﬁX(t)&U(t) ) (2-133 to
2 in terms of a symmetrized kernel mati(t, 7),
t 2.13
Ful= Gum? (2130 K(t, 7)== 3W(t) HS(t, ) [Lxu(t) +Feu(t)]
The notation in Egs(2.129—(2.129 and Egs.(2.133 and Ly 7) + Fu(7) 1Se( 7, 1) + Sy (t, 7) TF,(1)
(2.13b is consistent with that used previously, such that - 1
J%L19x(t)du(t) denotes a matrix whosgth row and kth (D) S\ OIW () (2.2

column isaz,/;/axj(t)ﬂuk(t). In this notation the order of the
differentiation is important, which results in the transposition
of the matrix,

Since EQ.(2.17) does not change whenhand 7 are inter-
changed we can conclude the following concise form for the
second variation of the cost functional:

T PL
~ aut)ax()

L
ax(t)au(t)

(2.19

2= jtfdt5u(t)TW(t)[I—S]W(t)5u(t). (2.22
to

The second variation of the cost functional given in Eq.
(2.11) is a quadratic form over the first variations xft), The kernelK(t,7) given by Eq.(2.21) includesu as an
u(t), and\ (t). Sincedx(t) andS\(t) depend orsu(t) (i.e.,  arbitrary function. However, we want to confine ourselves to
a laboratory variation of the contiplwe can write the fol- the case of optimal solutions because the robustness and op-
lowing relations in terms of their sensitivity coefficients with timality analysis are important for only these solutions.

respect to the control vector: Hence, we will take the following equation as the definition
of the kernel:
t
xt)y=1| d t,7)ou(r), 2.15 — = — —
® ft TSdtmeu 158 (== 3 WO 4S5t L0+ Frul0)]

+[Lu( 1)+ Fux(1)1S((7,t) + S (1, 1) TFy(1)
+Fy(NT S OIW() L (2.23

A similar relation also can be written for the control vector e kernelK (t,7) is closely related to the functional de-
itself as follows: rivative of u(t) with respect to its value at another time
4 u(7), whenu(t) is confined to the set of solutions to Eq.

5u(t):f dr 8(t— 1) du( 7). (2.16 (2.9. If we consider the set of variationsu(t) such that
to u(t) andu(t)+éu(t) remain in the set of solutions to Eq.

(2.9, then we can functionally differentiate E(.9) to ob-

SN(t)= fttfdfg(t,f) su(r). (2.15H
0

These relations lead to

tain
8= f:fdt :de5U(T)T{S((t,T)T[LXU(t)+qu(t)] X[ Lyy(1) +Fru(D)T8U(1)
+S\(t,7) TFy(1) + 8(t— 7)[ Lyy(t) + Fyu() ]} Su(t). +6u(t) L yu(t) + Fyu(t) 16u(t)
(2.17) +ON(1) TRy (1) du(t) =0, (2.24

If we now assume that the matrix sum which postmulti-where all overbarred quantities are evaluated at the nominal
plies the Diracé function in Eq.(2.17) is positive definite, values of the state and control variables. Equati¢gh&5a
then we can define a symmetric weight mawi)(t) as fol- and(2.15b can be quickly rewritten for the overbarred enti-
lows: ties as
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tively slowly. This is possible, for example, thi_mm(t) is
large while all other terms vary slowly. We may interpret

: L,u(t) as the weight of the field fluence. This means that the
S | .S norm of the kernel decreases as the contribution of the field
OMY) ftodTS)‘(t'T) ou(r). (2.25 fluence penalty term increases. Similarly, E2.23 implies

that the increasing sensitivity of the state and the Lagrange

The interpretation obu(t)" in Eq. (2.24 calls for care, as it multiplier vectors,S,(t) and S,(t), to the control variable
is the incremental response of the field about the nomma\JaiseS the value of the kernel’s norm.

solution to anarbitrary variation éu(t), such that

T 5u(t))
5u(t)—Jt dr 3u(7) Su(T). (2.26

0

X(t)= fdeg((t,r) su(7), (2.253

0

lll. ILLUSTRATIONS

This section will apply the general optimality and robust-
) ness formalism above to two examples. The first is a linear
The use of Eqs(2.253, (2.25h, and(2.26) in Eq. (2.249  gystem with a single control and a quadratic cost functional.
yields Bounds will be deduced for the eigenvalues of the operator
S, and a simple analytically soluble special case will be ex-
tf = — — amined to attain further insight. The last subsectiSec.
ftOdT ou(7) | Si(t, T)[Lyxu(t) +Fyy(t)] I B) gives the second example on the stability and robust-
ness of a quartic anharmonic oscillator.

ou(t)\T — — — | —
+(T((r))> [Luu(t)+Fuu(t)]+S>\(t)TFu(t)] ou(t) A. Linear systems
In Secs. llIA1-111 A3, we will present the general spec-
=0, (2.27  tral analysis for a linear system with a quadratic cost func-

_ tional. The treatment will include a spectral analysis and
where we have employed the symmetry property @f(t)  pounds for the kernel along with their relationships to gen-

andF,,(t). Equation(2.27) leads to the relation eral optimality and robustness properties. Finally an applica-
- tion will be given for a simple analytically soluble linear
ou(t)\T — — = — = system.
sucn)] =~ [Lu O+ FunD] HS( DL+ Fu(0)]
o o 1. Spectral analysis
T
+S(1) Fu(0)}- (2.29 Consider an optimally controlled system with an
A careful investigation shows that the kernel can be identin-dimensional state vecto(t) and a single control function
fied as u(t) associated with a quadratic cost functional. The La-
grangian has the form
1 Su(t)\T [ou(r =1y\T 1 2
Kt )= = | win[ 240 SZAN LKD), u(1),H=2X(0) QUOX(V) + 2 Qy(HU(D)?,
2 Su(r) ou(t)

(2.29 Qu(1)>0, Qt)'=Qut), teltoty] (3.1

which is the symmetric part ofV(t)[ su(t)/su(7)]" upon  andf(x(t),u(t),t) is given in terms ofA(t) andb(t),
the t« 7 interchange.

The operatosS is responsible for characterizing the opti- f(x(t),u(t),)=A(t)x(t) +b(t)u(t). (3.2
mality and robustness of the control solutions. Since it is L
symmetric by construction, its spectrum is rE0]. As long | Ne objective term has the form
as its largest eigenvalue about a nominal solution does not _1 T -
exceed 1, then the corresponding solution is acceptable; oth- e(X(19) 1) =2 [X(t) =X] Qu(t)[X(tr) =X],
erwise, the optimal solution will correspond to local maxima Q.(t)T=0Q.(t)) 3.3
of the cost functional. The distance between 1 and the largest A A '
e|genvalu_e ofS determines the degree of robustness. A, nharex is the prescribed target aigl,(t;) is assumed to be
smaller distance corresponds to a smaller curvature so as ﬁ)‘bsitive definite.
make the solution less sensitive to the changes in the control.
The determination of the spectrum of the oper&dor an
arbitrary system will call for standard numerical methods,

; . . dx _
and little of a general nature can be said before the analysis. — =A(t)X(t) +b(t)u(t), (3.4a
Hence, we will discuss the spectral evaluation on a simple dt

The nominal valuex(t),A(t),u(t) satisfy the equations

illustrative system in the next section.

Before closing this section, we can make a few qualitative X(to) =2, (3.4b
comments on the norm of the operator kerelAccording _
. . . - T dA(t) _
to Eq.(2.23, increasing the magnitude &¥(t) will dimin = —QOX(t) —A(D)TAY), (3.53

ish the norm of the kernel, if the other terms vary compara- dt



PRE 61 ASSESSING OPTIMALITY AND ROBUSTNESS FOR TH. . . 2573

A(t) = Qu(t[X(ty) —X], (3.5 Lw=0, (3.13b
Qu(t)U(t)wLb(t)Tf(t):O, (3.6) which imply that
where we have used W(t)=0Qy(t)* (3.19
f and from Eq.(2.20),
ax(0) =A(t), (3.7a9

K(t,1)=0Q,(t) ¥ S,(t,n) b+b" S\(7,1)]Qy(7) "2
(3.19

Equation(3.15 shows that the explicit determination of the
kernel necessitates the evaluation of the sensitivity coeffi-

de cient§(t,7). To this end we can start with the determina-

L
(0 = QX 3.7

T =0 (t tr) —X], 3.7 _ 2 _ _ . .
ax(ty) Qu(tr)x(t) =X] 379 tion of S,(t,7). This can be easily done by functionally dif-
ferentiating Eq.(3.8), with respect tau(t). This gives
of
—=h(t), (3.70 _ 0 t<
au(t) U T
S((t’T)_{P(t)P(T)_lb(T), t=r, 10
m =Q,(tu(t). (3.7¢ A similar treatment of Eq(3.10 gives the following relation

betweenS, (t,7) andS(t,7):

The solution forx(t) can be obtained in terms ai(t) _ T _
through standard analytic techniques to give the following S\(t,7)=P(t) 1 P(t)TQ,(ty)S(t¢,7)
explicit expression: t ; B
: + f dty P(t) 1 P(ty) "Qu(t1) Sy(t1, 7).
ﬂt)zP(t)awa d7P(t)P(7) " o(7)u(7), (3.8 '

to (3.17
whereP(t) satisfies The use of Eq(3.16) in Eq. (3.17 yields
%zA(t)P(t), (3.99 S\(t,7)= P(t)71Tp(tf)TQ<p(tf)P(tf)P( 7)"'h(7)
ty AT _
P(to):| (39k)) + fB(t,T)dtl P(t) . PT(tl)QX(tl)P(tl)P(T) 1b(7-)1
- . . — (3.18
A similar expression can be obtained to relr{¢) to x(t) as
follows: where
(D) =P() L P(t) TQ(t)[X(ty) ~X] T, t=r
¢ ,8(t,7)=[7_’ = (3.19

t
+ ["arpn) TR TR, (310 _
t Since S, (t,7) andb(t) are n-dimensional vector functions,
the kernel of the stability operatdf(t, r), is a scalar. There-

where we have used the fact fore, we can write

dP) _ - K(t,7)=Qu(t) Y Ky(t,7) + Ky (7,1)]Q (1) "2
G =~ POTA®, (3.11a (t,7)=Qy(t) VK (t,7) +Ky(7,1)]Qy(7) 320

P(ty) 1=I. (3.11b n
_ , , Ka(t,m)= 2 k9 (te) mi(t) (1) +Ka(t,7), (3.2
Equations(3.8) and(3.10 suffice to specify the kernéd of i=1
the operatoiS, since we can identify the specific values

t T
Fu=b(t), (3.123 Kz(t,T)=JﬁIt b bT(OP(1) ™ P(t1) Q1)
Fu=0, (3.120 X P(ty)P(7) " *b(7), (3.22
Fu=0, (3.120 7;(1)=Qy (1) "2 (t) TP(t;) P(1) (1),

Lyu=Qu(1), (3.133 i=123...n. (3.23
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In these equationss{¥(t;), af*)(t) denote thejth eigen- 2. Spectral bounds and general optimality
value and the corresponding normalized eigenvector of the and robustness properties
matrix Q(ts). The eigenvalues are real sinQg(ty) is sym- We seek simple expressions as bounds for the spectrum of
metric. _ S. To this end, the following bounds() for the norms of
Now we can formulate the eigenvalue problem of the op~/arious quantities are useful:
erators as
t; 1/2
Sé(t)=oé(t), (3.29 B(b)5< J dtb(t)Tb(t)) : (3.3)
to

or more explicitly 1/2

j "t g PO PO )
to

S50+ 2, vym (=€), (3.25 B(P)= YT . (3.32
to max
where the integral operatdy; is defined through an arbitrary
vector functiong(t) which is integrable over the interval ty Ter s 1T 1 2
e[to,t¢] as ) todté(t) P(t) "~ P(t) " ~d(t)
B(P7 )E ts T ’
Slg(t)Ef:fdr Qu(1) YKy (t,7)+Ky(7,1)] [rdtdty 4o max (3.33
X Qy(7) (7). (3.26 t 12
T T
v;, j=1.2,...nis defined as follows: B0,)= ftodtg(t) QU QDL (3.34
. " [idtanTan T
V,-sft dtn; (D E). (3.27) max

where the subscript max means the maximization with re-

To reduce the above eigenvalue problem to an algebraigpect tog. These definitions, combined with Eg8.15-
equation foro we can formally write (3.18), lead to

n B(S)=[B(Q,)+ B(Q,)1B(P)2B(P~1)2B(b)?,
§<t>=k§1 nloZ—S81] 1p(t). (3.28 (3.39

where3(Q,) is the largest one of the}“’)(tf) parameters in
Eqg. (3.2). If we define the condition numbef, for the
propagatoP as

Premultiplication of Eq(3.28 by #;(t) and integration over
t betweent, andt; gives the equations

n

— -1
2 ka(O') V= Vj y j:1,2, ... N (329) Kp_B(P)B(P )' (33@
k=1
then Eq.(3.35 becomes
where 2

B(8)=[B(Q,) + B(Q,) IKB(b)>. (3.37

tf _ B
ij(‘T)Eft dtn(D[oZ=S1] *m(t), j.k=1,2,...n. If the bound given above for the operator remains smaller

0

(3.30 than 1, then the control of the system under consideration is
stable. However, the bounds which exceed 1 do not mean

If we let p(o) denote then-dimensional matrix whose ele- that the control of the system is unstable due to the fact that
ments are represented by, (o), then we need to evaluate the norm analysis might be too conservative. ThH&S)
the possibler values which make at least one eigenvalue of<1 is not a necessary condition for optimality. In the case of
p unity. These values form a set for the solution of the eigenacceptable optimal control solutions, the difference between
problem. Their evaluation also produces the values of’fhe B(S) and 1 gives a measure of the robustness of the solu-
i=1,2,...n parameters within an arbitrary multiplicative tions. Smaller differences imply more robustness in the con-
constant. After having these values the remaining procedurol solutions since the reduced curvature of the cost func-
is just a matter of evaluation @f(t) from Eq.(3.28 within  tional leaves the system less sensitive to changes in the
the same arbitrary multiplicative constant. This procedurecontrolu(t).
needs an explicit expression pf(o) in terms ofo for all Some qualitative conclusions may be drawn from the
values ofj andk. To this end we can use a number of meansstructure of Eq.(3.37). To do so we will assumés(S)<1
including a series expansion, Stieltjes sefi@s characteris- and the issue of interest is how the physical variables act to
tic function approach10,11], Padeapproximantg9], etc. To  increase the robustness (S)—1; an extension of this
go further calls for numerical calculations, and for the pur-behavior eventually results in an unacceptable physical solu-
poses of this paper, it suffices to place bounds on the spetion B(S)>1 with 62.7<0 With these comments in mind we
trum of § as presented in the next subsection. may draw the following conclusions from E(B.37).
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(1) Objective.Increasing the contribution d#(Q,) from  smaller than a specific value to get positive curvature in the

the objective will enhance the robustness. cost functional and therefore optimality in the solution.
(2) Penalty Increasing the contribution oB(Q,) from
the penalty will enhance the robustness. B. An application to a quartic anharmonic oscillator

(3) Control coupling vectorEnhanced robustness occurs . . . .
with increasing magnitude of the control coupling vedbor C9n5|dgr an optimally corjtroll'ed plaSS|caI quartic anhar-
This, apparently, arises due to more effective control regardonic oscillator whose Hamiltonian is
less of the control strength.

1 k k
(4) Propggator's condition numperAs the condition Hzﬁxz(t)z—i— Elxl(t)z"’_ szl(t)4—bX1(t)U(t),
numberK, increases, a corresponding enhancement of ro- 34
bustness occurs. (3.42

Once again, all of the circumstances in poiii3—(4)  Whereky, ko, andb are constantsnis the massx,(t) is the
(especially the later onewhen taken beyond a critical limit, Particle position, and(t) is the associated momentum.
lead to a nonoptimal control solution. Additional subtleties The Lagrangian in Eq2.2) is specified as
might arise from a full analysis of the eigenvalues of the

_1 T 1. T7+)\2
operatorS, beyond the simple bounding behavior examined L), u(t),H=2x(1) Qx(t) + 7 wu(t)",
here. This point is amplified by observing that the bound T
given above does not explicitly depend on the nominal val- >0, Q'=Q, te[0k]. 343

ues of the state and control variables. This is due to the o . . o
specific structure of the example above. If the dynamicall "€ objective term in the cost functional of E.1) is given
constraint is chosen with a nonlinear dependence on the$

variables, or if the cost functional is chosen to have a higher . T _

order nonlinearity than a quadratic dependence on the vari- @(x(tp),t)=2[x(tr) —X] 'R[X(tr) —X], (3.44

ables, then the nominal values will appear in the bound. ) T ) » . ) )
with R'=R being positive definite. The equations of motion

3. Application to an analytically soluble linear system in Eq. (2.3 for this case are
Consider a simple nontrivial system such that a con- axq(t) 1

stantn-dimensional vectorA is ann-dimensional symmetric
constant square matrix, an@,(t) vanishes. The objective
termQ(t) is assumed to be a projection operator

T E72(t), (3.453

Pt = — kX1 (1) —kx7(t)3+bu(t) (3.450
Q. (t)=Vvyvy, (3.39 dt e 2 ' '
wherev, is an eigenvector oA. Thus, the goal is to steer the x1(0)=a,, (3.450
system state towards the eigenvectgrof A. We also as-
sume that X,(0)=a,, (3.459
Qy(1)=1. 339 with a, and a, being the initial position and momentum.
Similarly, the Lagrange multiplier Eq$2.8) and (2.9) be-
For this system, the kernel of the operatbcan be explicitly  ~jme y grang P as2.9 29
written as
— (bTv.)2e"1(2t—t=7) d,(t) _ _ o
K(t,7)=(b'v1)% : (3.40 at = = QX1 (1) = Q1Xa(t) + [ Ky + 3kaX1 () TJh (1),
The operatoiS has only one eigenvalue, given by (3.463
L ettt dho(t) _ 1
o1=(b'vy) T (3.4) dat —Q12X1(t) = QoXo(t) — 57\1(0, (3.460
This value increases unboundedlyif>0 when the control f(tf)= R[X(t;)—X] (3.469

time (t;—ty) tends to go to infinity. This means that the
solution will be lost after a specific value of the control time
interval. This is because positive; corresponds to a dy-

namically unstable system. The case where-0 creates a . . . .
similar chance of losing the solution when the control timeThe following changes to dimensionless variables are made

increases beyond a specific value. In the case of negagive ©© facilitate the subsequent analysis:- vm/kyt, Xy(t)
values, theo, value is bounded from above bp'vy)2 for = VKi/kXa(t),  ai—ki/kpay, %3— VNkl/kle’ X2~(t)
all control times. Hence, the solution of the optimal control =~ Kivm/KaXa(t),  ax—kivm/ikaap,  Xo—kyvm/koXy,
problem will exist if (0"v;)?<1. In the case whereb{v;)?2  Ny(t)—Vm/khq (1), No(t) —=myKy /KA o(t), u(t)—ky/
>1 and »,=0, one needs to use a control time interval bk, /k,u(t), w—mb’/k,w, and finally

wU(t) +bN,(t)=0. (3.47)
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vm/k, 0 vk Tk 0 To obtain an explicit expression fcg((t,r) we take the
R— R . i ivati _ :
0 m m 0 (1k,) \/m functional derivative of Eqs3.499—(3.490:
(3.48 —
aS(t,7) — 0
These transformations permit rewriting Eq8.453—(3.47) g MOStn+at-7) ), (3.553
in the following form:
%) S(0,7)=0, (3.550
=X(1), (3.493
dt which can be solved with the aid of a forward propagator
Pe(t) satisfyin
FO (1) satisfying
dt dPg(t)
—ar ~AMOPRD), (3.563
x1(0)=ay, (3.490
P:(0)=1. 3.56
Xx(0)=a,, (3.499 #o 13560
_ This propagator permits a compact solution of E355),
dA(t) —
g = AL —Qx(Y), (3.508 — o t<r
U= P )Pe(n) ey, t= 7,
A(ty) =R[x(ty) =X], (3.50h 0
0 1 = J, (3.57bh
Ai(t)= R } (3.500
—1-3x;(t) 0
Xa(t) which leads to
wU(t)+\,(t)=0. 3.50 — _
(D r0 (3509 5 (1,1 = Po(ORPL(t)PL(n) e
In this case the kernel of the stability operator can be written t
as + f dt; Pg(t)Pg (t) QPe(ty)Pe(7) " 'e,
maxt,7)
1
K(tr)=— 5 [S2tn+S2(rn], (351 (358
and finally yields
where the superscrigR) means the second element of the
sensitivity coefficient vector. To proceed, we take the func-S?(t, 7) =elPg(t)RPg(t;) Pr(7) "€}
tional derivative of Eqs(3.509 and (3.500 with respect to
tf _ _
u(). - fmw ity efPa(Pg (1) QPH(ty)P(7) ey,
9S,(t, _ _ ’
T A0S - QL. (3524 (359
This equation can be put into a more symmetric form be-
Si(t;, 1) =RS(t;,7). (3.52n  cause the forward and backward propagators are not inde-

pendent of each other. Manipulation of E¢8.533 and

The solution of these equations depends on the sensitivit{3.563 leads to
coefficient vectolS (t, 7) prescribed below. We now define a

: d
backward propagatd?g(t) as follows: a[PE(t)PF(t)]zo, (3.60
BPell) _ _ ATyt 3.53
dt 1()Pa(1), (3.533 which can be solved by using the conditions in E@53b
and (3.56 to give
Pg(ts)=1. (3.53bH . .
Pe(t) =Pe(ty) Pe (1), (3.61
Then Egs(3.523 and(3.52bh become
o o implying that
S\(t,7)=Pg(DRS(ty,7) L L
Pe(t)Pg "(t1) =[Pe “(t)] Pe(t). (3.62

tf JE—
+ | dt, Pg(t)Pg(ty) "1QS((t1,7). (3.5
ft 1Pa(DPs(ty)QS(t, 7). (359 This result employed in Eq3.59 produces
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S () = el PENOTRRtORPHt)PE (D) oi(t)=- iEL<R>( J tfdteI[P;%t)]TPE(tf)rl)z
® 0

tf _
+ f dt; [P ()]
maxt,7)

X PL(ty)QP(ty) P H(1)e,, (3.63

2

1 t
—;Esm)( Jofdtel[PH(t)]TPE(tf)rz) :

(3.70

which shows thatr,(t;) is a negative definite function since
S - 4 T w is positive whileg; (R) andEg(R) are non-negative.
e[ Pr (1) ]TPE(t)RPe(t) P *(1)€) Following along similar lines the positive definite nature
and symmetry of) lead to writing

which enables identifying the kernel as

1
K(t,T):—Z

+&)[ Pr (1) TPE(t)RP:(t)PE X(t) ey

; Q=EL(Q)q:101 +E5(Q)qz0 (3.70
+ dt, e[ PE 1 (1) ]TPE(t) QPe(ty) Pt
J'mar(t,f) 1€ Pr (O] Pr(t) QPR(t) P (e, whereE, (Q) andEg(Q) denote the largest and smallest ei-
T genvalues ofQ, respectively, whileg; andq, stand for the
+ f dt; el[P- () ]TPE(t))QP:(t,)P X(t)e,|.  corresponding eigenvectors. This formula enables expressing
maxt,7) oy(ts) as
(3.69
1 t; t ts
Recall that the stability operator is defined by oa(ty) =~ —EL(Q) jo dtfodTJt dty &1(t,t1)&1(7.tg)
ts 1 tf t tf
S(p(t)Ef d7K(t,7) (1), (3.65 - ZES(Q) fo dtfodet dty &,(t,t) Ex(T,t9)
0
where ¢(t) is a square integrable function ovee[0t¢]. - EEL(Q)J'tfdtftdeftfdtl E(tt)E(Tty)
Without loss of generality, if we assume thaft) has unit w 0 t T
norm, then the following inner product will characterize the 1 . . .
spectrum of the stability operator: - _ES(Q)f fdtf def "dt, £(tt) Ex(Tty),
w 0 t T
ty ty
(e.50)= [ lat[ Mdr 0Kt D0 =ost) + ot (372
(3.66  where
where &(tt)=el[Pe (D]TPE(t)ay, (3.733
1 [t [t _ATrp-1 TpT
Ul(tf)E_ZJ fJ' fdtdre}[P,Zl(t)]TPE(tf) §2(t,t1)—ez[PF (t)] PF(tl)qZ' (373t)
0Jo

1 T The third and fourth integrals are, respectively, the same
XRPe(tf)Pe ()&, (367 as the first and second ones in E8.72. This comes from
the following triangle identity which is valid for any arbi-

1 [t [t trary function¢(t,7):
Uz(tf)E—;ff "dt dr y .7
0Jo

t ty t r
) fdtf d”f’“vﬂff dff dte(t,n). (379
Xf dt; [P () ]TPE(ty) 0 t 0 0
maxt,7)
X QP(t1)PrY(1)e,. (3.69 Therefore, we have

. . . . . . 2 t t tg
SinceR is a positive definite X2 symmetric matrix, we can g ,(t;)=— _EL(Q)j dtf de dt, £4(t,t)) E1(7ty)
write it in terms of the following spectral resolution: ® 0 0 t

2 t t t
R=E (R)ryr{ +Eg(R)r,r3, (3.69 - _ES(Q)J fdtJ de fdtl E(tt)&x(T,ty).
& 0 0 t

whereE, (R) andEg(R) denote the largest and smallest ei- (3.79
genvalues oR, respectively, whiler; andr, stand for the

corresponding eigenvectors. This formula permits writinglf we now apply the above triangle identity to the integra-
oq(t;) as tions overt andt,, then we obtain
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2 ts ty t IV. CONCLUDING REMARKS
oy(ty)=— ;EL(Q)L dtljo dtJOdTgl(tvtl)fl(Tvtl)

This paper presents a general framework for analyzing the
) t t t optimality and robustness of any particular control solution
f 1 to a deterministic system. The concepts and tools should be
B ZES(Q) Jo dtlJO dtjodT&(t’tl)gZ(T’tl)’ broadly applicable when considering the control of dynami-
cal system$11-13. The perspective we follow here is dis-
(3.76  tinct and complementary to that in the prior literat{iée-8].
It is shown that both of these issues are dictated by the ei-
genvalue spectrum of the operat®whose kerneK(t,7) is
1 t t 2 related to the dynamically constrained functional derivative
oy(ty)=— ZEL(Q)f dt( j d7 é( r,t)) su(t)/ su(r) for to<<t, 7<t;. No attempt was r_nade_z to con-
0 0 duct a full functional analysis of this problem in this present

which yields

1 4 ‘ ¢ 2 paper. Here, a bound on the spectrum for linear control sys-
— —Es(Q)f dtj dq-( f dng(T,t)) ] tems led to an interesting set of qualitative conditions regard-
0] 0 0 0 ing robustness and optimality. These conditions may serve to
3.77) qualitatively guide future robust design efforts for the control
' of deterministic systems.

Equation(3.77 implies thato,(t;) is a negative definite _ The two illustrations based on linear systems and a quar-
decreasing function of; . This result and the previous one tic anharmonic oscillator demonstrate different models of
for o4(t;) lead to the following conclusions. stability and robustness analysis. In the case of linear sys-

(1) The control of a classical quartic anharmonic oscilla-tems we constructed bounds to determine the spectral range

tor always exhibits stable behavior as shown by the negativ@f the stability operator, whereas for the quartic anharmonic

definiteness of the stability operator. In the same vein th@Scillator case the analysis was based on demonstrating the

control doesnot show robustness to disturbances. Thus;as N€dative definite nature of the stability operator. Each future
increases the control dynamics becomes more stable but le@8Plication will have its own features for analysis, including
robust. the need for a full numerical analysis of the kernel in some
(2) If the control timet; tends to increase, then the sta- cases.
bility operator tends to be more negative definite since
o,(tf) decreases, unless a special relation exists between
and Q. Thus ast; increases the control dynamics becomes The authors acknowledge support from the U.S. Depart-
more stable, but less robust. ment of Defense and the National Science Foundation.
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